Cara Cepat Mencari KPK Untuk Dua Bilangan Bulat

Untuk menguasai cara cepat mencari kelipatan persekutuan terkecil (KPK) dari dua bilangan bulat, Anda harus mampu atau sudah menguasai cara mencari faktor persekutuan terbesar (PFB) dari dua bilangan bulat. Jika Anda belum paham atau belum menguasainya, silahkan baca postingan Mafia Online tentang cara menentukan FPB dengan faktorisasi prima dan pohon faktor.

Cara tercepat untuk mencari KPK dari dua bilangan bulat, dapat digunakan rumus berikut ini.
Cara Cepat Mencari KPK Untuk Dua Bilangan Bulat

Ingat** rumus cara cepat untuk menentukan KPK di atas hanya berlaku untuk dua bilangan bulat dan tidak berlaku untuk lebih dari dua bilangan bulat. Oke, untuk memantapkan pemahaman Anda tentang cara cepat mencari KPK, silahkan simak contoh soal di bawah ini.

Contoh Soal 1
Tentukan KPK dari 100 dan 250

Penyelesaian:
Jika kita menggunakan faktorisasi prima atau pohon faktor maka akan diperoleh FPB dari 100 dan 250 adalah 50. Dengan menggunakan cara cepat maka KPK dari 100 dan 250 adalah:
=> KPK (n, m) = n × m/[FPB (n, m)]
=> KPK (100, 250) = 100 × 250/50
=> KPK (100, 250) = 500
Jadi, KPK dari 100 dan 250 adalah 500

Contoh Soal 2
Di sebuah taman kota terdapat dua serangkaian lampu penghias seperti gambar di bawah ini. Kedua lampu tersebut menyala dengan periode yang berbeda-beda. Lampu kuning menyala setiap 6 detik sekali dan lampu biru menyala setiap 8 detik sekali.
Lampu taman kota
Sumber gambar: blog.ub.ac.id
Setiap berapa detik kedua lampu tersebut akan menyala secara bersamaan?

Penyelesaian:
FPB dari 6 dan 8 adalah 2. Dengan menggunakan cara cepat maka KPK dari 6 dan 8 adalah:
=> KPK (n, m) = n × m/[FPB (n, m)]
=> KPK (6, 8) = 6 × 8/2
=> KPK (6, 8) = 24
Jadi, kedua lampu tersebut akan menyala secara bersamaan setelah 24 detik.

Contoh Soal 3
Untuk menjaga keamanan lingkungan maka penduduk di Dusun Bangkit Jaya mengadakan ronda pada malam hari secara bergiliran. Pak Iwan mendapat tugas ronda setiap 8 hari sekali dan Pak Agus mendapat giliran tugas ronda setiap 12 hari sekali. Pada tanggal 28 Juli 2014 Pak Iwan dan Pak Agus mendapat tugas ronda bersama untuk kali pertama. Kapan mereka akan mendapat tugas ronda secara bersama untuk kedua kali dan ketiga kalinya?

Penyelesaian:
FPB dari 8 dan 12 adalah 4. Dengan menggunakan cara cepat maka KPK dari 8 dan 12 adalah:
=> KPK (n, m) = n × m/[FPB (n, m)]
=> KPK (8, 12) = 8 × 12/4
=> KPK (8, 12) = 24
Maka Pak Iwan dan Pak Agus akan mendapat tugas ronda secara bersamaan setiap 24 hari. Pada bulan Juli ada 31 hari, maka untuk kedua kalinya mereka akan bertugas secara bersamaan pada tanggal 21 Agustus 2014. Pada bulan Agustus juga ada 31 hari, maka untuk ketiga kalinya mereka akan mendapat tugas secara bersamaan pada tanggal 10 September 2014.

Demikian cara cepat menentukan KPK dari dua bilangan bulat. Ingat sekali saya tekankan bahwa cara di atas hanya berlaku untuk dua bilangan bulat. Untuk yang lebih dari dua bilangan bulat akan Mafia Online ulas pada postingan berikutnya. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan di atas. Salam Mafia => Kita pasti bisa.